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Introduction: 

Understanding the mechanical and 

physical characteristics of soil, as well as how 

these characteristics vary geographically, is 

crucial to the precision agriculture idea. 

Differences in concentrations, fertilizer 

requirements, herbicide action, and crop yield 

within a field are caused by spatial variation in  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

soil parameters. Accordingly, areas within a 

field that receive uniform soil treatment will 

either be over- or under treated. One barrier to 

the broad use of precision agriculture is the 

measurement of soil heterogeneity. Plant-soil 

interactions are significantly impacted by soil 

organic carbon (SOS). SOC content is closely  
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Abstract: - 

One helpful soil characteristic that can be used to direct the 

application of chemical inputs in agriculture is the concentration of 

soil organic carbon (SOC). To make this possible, maps of surface 

SOC concentrations must be created using quick, easy, accurate, 

and affordable techniques. In order to quickly measure and track 

certain surface soil properties, including SOC, researchers have 

looked into estimates of soil surface properties from remotely 

sensed data. This paper's goal is to examine the possibilities and 

constraints of using remotely sensed data for SOC mapping and 

assessment. To examine the accuracy of such estimations, a 

number of statistical techniques have been applied to the data, 

including principal component analysis, geostatistics, the "soil 

line" approach, and basic regression models. A survey of the 

literature demonstrates that fresh regression models are needed for 

each scene and that prediction equations are not universal. The 

ability to provide a sample plan that may result in better 

representation of spatial variability in SOC is a significant 

advantage of remotely sensed data. 
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associated with soil quality not only as a 

measure of soil erosion and degradation, but 

also as a regulator of various processes, 

including crop yield, pesticide behavior in soil, 

plant-available N, the soil's capacity to adsorb 

plant nutrients, and water holding capacity and 

permeability. It could be helpful to know its 

content in the soil, particularly if its spatial 

distribution could be precisely ascertained and 

affordably. Sampling strategies, such as those 

based on a grid or zones, have been employed 

to ascertain the within-field variation in SOC 

and other parameters. It is possible that the 

geographical variation in SOC occurs at a finer 

spatial scale than what can be achieved by 

physically sampling the soil and then 

analyzing it in a lab. To reduce the costs of 

creating maps of surface SOC concentrations 

to support precision agriculture, quantitative 

soil-landscape modeling, and global soil C 

monitoring, it is acknowledged that techniques 

that use the fewest number of soil samples 

possible must be developed.  Reflectances in 

specific spectral bands have been linked to soil 

properties, according to recent research. These 

reflectances may offer low-cost predictions of 

the physical, chemical, and biological 

characteristics of the soil. The soil gets darker 

as SOC rises, and vice versa. The idea that 

electro-optical sensing of SOC would be 

possible was based on this broad observation. 

High resolution spectral sensors have been 

developed as a result of numerous researchers' 

attempts to use soil reflectance in the lab to 

determine SOC. Ancillary information on the 

soil can be obtained from the remotely sensed 

data produced by these sensors.  Our 

comprehension of the site-specific variance of 

the soil's surface horizon may be enhanced by 

the capacity to estimate soil parameters from 

remotely sensed photographs. In order to 

create a model that can forecast soil organic 

carbon from reflectance values at any point on 

the field image, sampling areas are chosen 

using this method to cover the range of 

reflectances in the area of interest. Reflectance 

has been used to measure SOC in a number of 

methods throughout the last 30 years. This 

paper's goal is to examine the methods for 

identifying SOC content from remotely sensed 

data and look into its advantages and 

disadvantages. An outline of SOC's spectral 

characteristics is presented first, then 

techniques for estimating it from reflectances 

gathered by space and aerial remote sensing. 

Spectral features of Soil organic carbon 

In the electromagnetic spectrum, a 

material's reflectance or absorbance as a 

function of wavelength defines its spectral 

signature. The signatures are caused by 

vibrational stretching and bending of structural 

groupings of atoms that form molecules or 

crystals, as well as electronic transitions of 

atoms under regulated conditions. The energy 
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levels at which molecules can reach higher 

vibration states are where fundamental 

characteristics of reflectance spectra appear. 

Overlapping bands from various mineral 

components and organic matter cause 

absorption features in soil.  According to 

reports, the average R2 value for the visible 

(VIS), near infrared (NIR), and middle 

infrared (MIR) is 0.89, 0.79, and 0.74, 

respectively. The most popular approach, 

partial least-squares regression (PLSR), has 

produced the highest correlation coefficients. 

The soil often exhibits reflectance 

spectra in the 1100–2500 nm range, with three 

major absorption peaks at 1400, 1900, and 

2200 nm as well as a few minor absorption 

peaks between 2200 and 2500 nm. It is more 

challenging to identify the connection between 

spectral and physicochemical features when 

organic matter is present because it reduces the 

total reflectance and, consequently, the 

spectral contrast. The NIR (700–2500 nm) and 

VIS (400–700 nm) portions of the 

electromagnetic spectrum are dominated by 

the weak overtones and combinations of these 

fundamental vibrations caused by the bending 

of NH, OH, and CH groups. However, the 

fundamental features related to various 

components of soil organic matter typically 

occur in the mid- to thermal-infrared range 

(2500–25,000 nm). Around 410, 570, and 660 

nm are significant bands in the VIS range for 

the prediction of SOC.  Organic matter lowers 

reflectance in the 550–700 nm range. It also 

causes a concave curve for higher OM levels 

and a convex one for lower OM contents in the 

500–1300 nm range. In the near-infrared 

spectrum, OM and reflectance are likewise 

highly correlated. The wavelengths that are 

most sensitive to OM levels include 1720, 

2180, and 2309 nm and 1744, 1870, and 2052 

nm. The MIR range offers more information 

on OC in soil than the NIR range does. Using 

the response of soil reflectance to OC, parent 

material, and other soil characteristics, 

Henderson et al. (1992) divided spectral bands. 

They discovered that the wavelengths between 

2200 and 2500 nm were the most effective for 

detecting SOM. However, due to the influence 

of other soil characteristics that obscure soil 

reaction, the wavelengths between 2225 and 

2255 and 2275 nm should be avoided. 

Henderson et al. (1992) also noted that the 

visible and near-infrared portions of the 

spectrum (400–1100) are where the effect of 

OC is most noticeable, and that certain regions 

of the SWIR spectrum (1100–2500) may be 

able to estimate SOC levels sampled across 

wide geographic areas on various parent 

materials. 

Aerial and space remote sensing of SOC 

Researchers have been looking into 

novel methods to improve the precision of 

determining SOC using remotely sensed (RS) 
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data over the past thirty years. Regression, the 

"soil line," PCA, and geostatistics based 

models have so been put forth. 

Simple regression models 

The first airborne studies to examine 

the connection between OM and reflectance in 

the visible and near-infrared ranges were 

conducted by Baumgardner et al. (1970) and 

Al-Abbas et al. (1972). 

Research was then conducted to 

determine whether remotely sensed data could 

be used to direct sampling, assess the status of 

SOC for agricultural and environmental 

activities and effectively distinguish between 

various soil properties and vegetation types. It 

can be predicted and expressed by soil 

reflectance, as evidenced by the significant 

association found between SOC and soil 

spectral reflectance.  In order to identify the 

best wavelengths for assessing SOC, various 

spectra sections have also been examined. 

Abgu et al. (1990) demonstrated a substantial 

correlation between the soil's organic C 

content and just the red and green bands. 

Similar to McCarty's (2002) findings, Sullivan 

et al. (2005) demonstrated that 93% of the 

variation in SOC could be explained by the 

thermal infrared (TIR) index, with VIS and 

NIR spectra contributing less. The VIS, MIR, 

and TIR band ratios accounted for 38% of the 

variation in SOC in one of the fields under 

investigation. Similarly, at another site, 42% of 

the variation in SOC was explained by the TIR 

and VIS ratios. According to Bajwa et al. 

(2001), the red portion of the spectrum had the 

highest correlation. The link became less as 

the wavelength was reduced in the blue and 

green regions. When compared to the other 

spectral ranges, the NIR spectrum showed the 

least connection. Spectral mixing can have an 

impact on the associations by altering the 

spectra's slope and lowering the correlations. 

For instance, Galvao et al. (2001) found that 

the presence of non-soil residues on the soil 

surface resulted in modest correlation 

coefficients between reflectance and organic 

matter in the visible range. The maximum of 

these correlations occurred between 1200 and 

2000 nm, after which they declined as the 

wavelength increased.  

In more recent and thorough investigations, 

Chen et al. (2000 and 2005) used two distinct 

approaches to investigate the connection 

between the OC content in the top 15 cm of 

the soil profile and specific regions of the 

spectrum from the image. The surface SOC 

concentrations for every pixel were determined 

using an equation in the first technique, and 

the results were categorized into eight classes. 

The image was divided into 20 groups using 

the second approach, and the categorized result 

was then subjected to the aforementioned 

equation. Ultimately, eight classes were 

created by further grouping the initial 20 
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groupings. In every image, there was a high 

degree of agreement between the measured 

and anticipated values for both approaches. In 

order to calculate SOC, Chen et al. (2000) 

collected 28 soil samples from a field covering 

roughly 115 hectares, and then created maps 

using the information. This sample size is 10-

40% of what would have been needed to create 

equivalent maps using grid sampling. At least 

284 samples from this 115 ha area would be 

required for a grid sample at a scale of 0.405 

ha. The main benefits of the SRM approach 

over grid sampling are its affordability and its 

capacity to provide a thorough and precise 

account of the geographical variation in soil 

organic carbon. When using grid sampling, 8–

10 cores are usually collected in order to create 

a composite sample that represents an area of 

at least 0.405 hectares (1 acre). The composite 

sample offers little insight into the variation 

across the sample's covered region, even if the 

individual core samples accurately reflect the 

area sampled. On the other hand, surface SOC 

concentrations might be mapped at picture 

pixel size resolution using the SRM approach. 

Geostatistical techniques 

Local correlation between measured 

OM and spectral reflectance values at the same 

sites is used in multivariate regression-based 

spatial predictions. Spatial autocorrelation in 

OM is not taken into consideration in these 

projections. The implicit premise of regression 

is that values at one site are unrelated to those 

at nearby sites. In contrast, geostatistics 

models the spatial variance using spatial 

autocorrelation. Furthermore, some techniques 

have been demonstrated to enhance SOC 

estimates through the use of correlated 

secondary data, particularly when the latter is 

at a lower sampling density than the secondary 

variable. Both auto- and cross-correlation 

functions must be modeled using these 

techniques. The degree of spatial correlation in 

the variable of interest, sample size, and 

sampling design all have a significant impact 

on the accuracy of estimates in univariate 

mapping, according to sampling and 

geostatistics research. A number of 

geostatistical techniques can use secondary 

data, which is frequently more expensive and 

time-consuming to acquire than the primary 

soil variable. Cokriging, kriging inside strata, 

kriging with external drift, simple kriging with 

different local means, and regression kriging 

are some examples of these techniques. The 

assumptions made by these approaches vary 

with regard to the structure of the relationships 

between the primary and ancillary variables as 

well as the way in which the primary variable 

is estimated at unsampled locations using 

secondary data. Digital soil surveys, digital 

elevation models (DEM) and derived terrain 

indices, remotely sensed images of soil surface 

reflectance, apparent electrical conductivity 
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(ECa), and measurements of soil properties 

through on-the-go sensors are just a few 

examples of the ancillary variables that are 

available at the field scale. Given the close 

correlation between reflectances and SOC, as 

well as the affordability and real-time 

accessibility of pictures, remote sensing may 

be one of the most useful sources of secondary 

data. To enhance the forecasting of limited 

information from soil surveys, Kerry and 

Oliver (2003) proposed the inclusion of more 

extensive, less costly auxiliary data, such as 

aerial photos of bare soil. Even though the 

photos are from a typical survey archive and 

the coordinates (x and y) of the soil data and 

auxiliary information are not precisely at the 

same places, this was still advised. The use of 

supplementary data for kriging typically yields 

more accurate local forecasts if there is a 

significant connection between the primary 

and secondary variables. The degree to which 

SOC and secondary data were related 

determined how much better regression 

kriging was than standard kriging. Because 

kriging employs the spectrum data to 

determine the local mean or trend of any soil 

property, it produces more accurate estimates 

for soil variables that have a significant 

association to spectral data as secondary 

information. Nonetheless, secondary data 

ought to be included in the mapping prediction 

process whenever it becomes accessible. 

Techniques that use a moderately correlated 

secondary attribute to map the primary 

variable outperformed univariate approaches 

like standard kriging, even in cases where the 

secondary attribute is available, such as 

remotely sensed (spectral) data from aerial 

photographs. Regression and simple kriging 

have the highest mean squared errors (MSEs) 

among the various approaches, while the 

MSEs for the other geostatistical techniques 

that take into account secondary data, like 

spectral data, are lower. Due to the limited 

relationships between spectral values and soil 

properties, simple linear regression produced 

the worst forecasts. Compared to ordinary 

kriging, the MSE for basic linear regression 

plus ordinary kriging is lower. 

Conclusions 

Improved depiction of the spatial 

variation in the soil property of interest can 

result from estimates of soil surface properties 

derived from remotely sensed data. For the 

practical purpose of predicting SOC, simple 

regression models are sufficiently accurate. 

More general techniques like principal 

component analysis and the SLED 

methodology were created to guide soil 

sampling and enhance the depiction of within-

field variation in surface organic matter 

content. Furthermore, it has been demonstrated 

that geostatistical methods that may make use 

of auxiliary data like that from sensors 
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improve SOC prediction. These strategies do, 

however, have certain drawbacks. Regression 

models, for instance, are location- and even 

imagery-specific and cannot be applied in 

other contexts. The SLED technique ignores 

important relationships between other bands 

and OM content, etc., and only employs 

reflectance in the R and NIR bands. Studies 

have demonstrated a substantial correlation 

between bare soil reflectance and changes in 

parent material and soil surface conditions at 

the time of data collection (such as moisture, 

tillage, crop residues, crop cover, etc.). As a 

result, even while high resolution aerial or 

satellite photos are become cheaper, more 

accessible, and taken more frequently, their 

usefulness for mapping and tracking soil 

carbon stocks at the field scale might differ 

greatly. Nearly every researcher cited the 

primary benefit of remotely sensed data, which 

is that it can be utilized to create a sampling 

plan for mapping SOC with the fewest samples 

and the highest accuracy. Therefore, we 

suggest that rather than predicting soil 

attributes, future research should first 

concentrate on using remotely sensed data to 

guide sampling. PCA or the percentile 

approach of the soil line can be used for this. 

Future research should concentrate on the use 

of satellite data as secondary information in 

geostatistical analysis, as this has 

demonstrated the ability to enhance SOC 

forecasts. The majority of studies that have 

estimated SOC using remotely sensed data 

have done so in regions with high SOC 

contents and minimal interference from other 

soil characteristics. For example, no research 

has compared these methods in a region that is 

arid or semiarid. Large concentrations of 

CaCO3 or CaSO4 can significantly alter the 

spectral behavior of soil in these conditions. 

This might significantly impact how well the 

approaches are performed. Future studies are 

required to examine the potential of remotely 

sensed data to direct sampling and forecast 

SOC in settings with varying soil, parent 

material, and climate. The acquisition of more 

relevant data from fields could enhance soil 

surveys and evaluation. 
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