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Abstract: 

Over the past two decades, digital plant pathology researchers have strived to 

integrate advanced technologies like sensors and machine learning into plant health 

monitoring and analysis. This integration has faced numerous obstacles due to the 

complexity of both greenhouse and field environments, which require different 

experimental approaches. The field's challenges are multifaceted: researchers must 

choose appropriate sensor technologies (such as thermal or hyperspectral imaging), 

determine suitable platforms for deployment (like drones, ground vehicles, or 

satellites), and consider the specific spatial and temporal requirements of each study. 

This is particularly complicated because each plant-pathogen system is unique, with 

distinct symptoms and interactions. The complexity increases when considering how 

plants, pathogens, and environmental factors interact across time and space. To better 

understand these relationships, researchers need extensive datasets. Modern machine 

learning, particularly deep learning, has emerged as a valuable tool for analyzing this 

complex data efficiently and objectively, potentially revealing previously unknown 

patterns in plant-pathogen-environment interactions. However, potential users often 

remain skeptical about these new technological approaches. To bridge this gap 

between research and practical application, scientists must clearly explain how 

biological mechanisms relate to machine learning findings, making their results 

accessible to non-experts. The authors propose creating a global network of experts 

and data sharing to establish a focused research agenda. This collaborative approach 

could accelerate progress in both research and practical applications. They suggest 

organizing international centers of excellence to minimize redundant research while 

promoting complementary studies. The review aims to examine past research 

achievements and persistent challenges, using this historical perspective to identify 

future challenges and propose a direction for digital plant pathology research in the 

coming decade. 
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Introduction 

Society's evolving focus on 

environmental sustainability, now called 'neo-

ecology', is fundamentally transforming 

traditional agriculture. Current agricultural 

practices, including animal husbandry, crop 

farming, and plant disease management, are 

being reevaluated to align with environmental 

and human health protection goals, following 

'agriculture green development' principles. 

With agriculture currently occupying 38% of 

Earth's available land (about 5 billion 

hectares), the sector faces a complex 

challenge: it must become more 

environmentally sustainable while 

simultaneously increasing productivity to feed 

a growing global population. This challenge 

has become even more pressing since the 

COVID-19 pandemic, which saw the number 

of undernourished people rise from 650 

million (8.4%) to 811 million (9.9%). To 

ensure adequate food production, preventing 

avoidable crop losses is crucial. While 

integrated pest management (IPM) has helped 

limit losses in major food crops (wheat, rice, 

maize, potato, and soybean) to 20-40% from 

pathogens and pests, monitoring large 

agricultural areas remains problematic. 

Farmers often find it financially impractical to 

regularly inspect their extensive fields for 

diseases and other yield-reducing factors. 

Remote sensing technology offers a solution to 

this monitoring challenge by providing high-

resolution temporal and spatial surveillance. 

This technology enables efficient identification 

of diseased plants, allowing for targeted 

ground analysis and treatment before 

significant financial losses occur or diseases 

spread into epidemics. The effectiveness of 

remote sensing in detecting plant diseases 

stems from how pathogens and pests alter the 

way light interacts with plant leaves and 

canopies. Remote sensing fundamentally 

involves using non-contact sensors, primarily 

optical devices like RGB cameras, multi- and 

hyperspectral sensors, thermal imaging, 

chlorophyll fluorescence detectors, and 3D 

imaging systems, to gather data about both 

natural and human-modified landscapes. These 

optical sensors enable non-destructive disease 

monitoring at various scales, complementing 

traditional monitoring methods that range from 

molecular testing to smartphone apps, while 

reducing the manual effort required for field 

disease detection. However, using remote 

sensing for field disease detection isn't as 

straightforward as it might seem. Plant 

diseases themselves are complex phenomena, 

characterized by uneven distribution within 

crop populations and dynamic behavior across 

time and space, resulting from interactions 

between living organisms in constantly 

changing environmental conditions. 
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The authors emphasize that digital 

plant pathology's primary objective must be 

addressing farmers' practical needs. Their 

paper aims to propose a new direction for 

research in this field by: 

 Examining key milestones in digital 

plant pathology 

 Exploring current imaging technologies 

and analysis methods 

 Assessing the present state of applied 

digital plant pathology 

 Evaluating whether automated disease 

detection has successfully improved 

upon manual detection methods 

Digital plant pathology 

As optical sensor technology advanced, 

Colwell made a breakthrough in 1956 by using 

military helicopters equipped with infrared 

cameras and spectrometers to detect wheat rust 

and other grain diseases from different 

viewing angles. His research explored various 

spectral band combinations and established a 

novel understanding of light-plant interactions, 

creating a theoretical foundation that remains 

crucial in today's digital plant pathology. 

By 2000, scientists developed the 

concept of "foliar functional traits" as a key 

framework in terrestrial remote sensing, 

helping to understand both natural plant 

variations and stress responses. This led to the 

development of "spectranomics" - combining 

spectroscopy with chemistry and taxonomy. 

This approach is based on the principles that 

plants have distinct chemical and structural 

signatures, and that spectroscopic 

measurements can reveal their chemical 

makeup. Spectranomics enables non-invasive 

detection of disease-related changes in plants, 

both before and after symptoms appear visibly. 

Different wavelength ranges interact with 

specific aspects of plant biology: ultraviolet 

(100-380 nm) detects secondary metabolites, 

visible light (400-700 nm) reveals pigments, 

near-infrared (700-1000 nm) shows leaf 

structure, and short-wave infrared (1000-2500 

nm) indicates chemical and water content. 

These spectral properties allow detection of 

various disease-induced changes in plants, 

including alterations in nutrients, water 

content, photosynthesis, and cell structure, 

explaining why remote sensing effectively 

detects plant diseases. The combined effect of 

the basic biochemical, structural, and 

physiological mechanisms underlying the 

diseased plant phenotype is evaluated by 

remote imaging spectroscopy. Although 

additional electromagnetic spectrum ranges 

might potentially yield intriguing data, it is 

frequently impossible to attribute the identified 

alterations to a particular source. For instance, 

thermal cameras may detect infrared (8–12 

μm) light and provide a "calibrated" plant 

temperature. There is a close correlation 

between a plant's temperature and transpiration 
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rate.  This allows for the recording of the 

crop's or plant's water balance as well as the 

early identification of any drought stress. 

Despite having extremely high sensitivity, 

thermography and chlorophyll fluorescence 

sensors are unable to distinguish between 

biotic and abiotic stressors and, consequently, 

a causal relationship to a particular disease. 

Nonetheless, a particular characterisation of 

plant diseases can be made possible by a 

combination of sensors.  

Zarco-Tejada et al. (2018) were able to pre-

symptomatically identify Xylella fastidiosa 

infection in olive trees in the last several years 

by using a radiative transfer and machine 

learning technique (Hernández-Clemente et al. 

2019). This was accomplished by combining 

thermal, solar-induced fluorescence, and 

hyperspectral NIR data. The authors 

discovered that in order to differentiate 

asymptomatically infected plants from both 

symptomatic and healthy plants, spectral-plant 

trait changes in response to X. fastidiosa 

infection were crucial for both spectral stress 

indicators and pigment degradation traits, 

especially the chlorophyll degradation 

phaeophytinization-based spectral trait 

(NPQI). In their further research, the authors 

discovered that in irrigated almond fields, 

NPQI was only suggestive of asymptomatic X. 

fastidiosa infection. This ultimately resulted in 

the identification of distinct pathogen and 

host-specific spectral circuits that respond to 

biotic and abiotic stressors while producing a 

comparable visual expression. Despite the fact 

that bacterial infection and dryness both cause 

plants to wilt, spectroscopy may be used to 

identify the differences in the methods by 

which they do so. The authors subsequently 

improved their misclassification accuracy from 

37% and 17% to 6.6% and 6.5%, respectively, 

by uncoupling the confounding interaction 

using the thermal crop water stress index 

(CWSI). The authors developed a robust 

disease detection and differentiation 

methodology for mapping asymptomatic X. 

fastidiosa infection in diverse crops at scale by 

evaluating spectrum trait measures that 

identified the underlying physiochemical cause 

of their diseased plant phenotype. This 

accomplishment supports and gives hope to 

further research aimed at identifying illnesses 

in multistress, real-world settings.  

Data handling and machine learning 

After collecting imaging data, 

researchers must develop comprehensive data 

analysis pipelines to extract meaningful 

information. The process involves several key 

steps: 

First, the raw data must undergo 

preprocessing, which includes: 

 De-noising and smoothing 

 Calibration 

 Image segmentation 
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 Outlier removal 

These steps transform raw image data 

into features suitable for machine learning 

applications. This preprocessing stage is 

crucial but demanding, especially for different 

types of sensors used in greenhouse and field 

settings. 

For hyperspectral measurements, researchers 

can either use: 

1. Raw reflectance signals directly, or 

2. Simplified vegetation indices like 

NDVI or OSAVI to reduce data 

complexity while maintaining 

predictive power 

Field-based multispectral imaging 

presents additional challenges, requiring more 

extensive registration and calibration due to 

changing environmental conditions and larger 

areas of interest. 3D imaging techniques can 

help provide necessary calibration information 

in these situations. 

The machine learning phase then gives 

meaning to the processed data. This typically 

involves supervised learning, where classifiers 

are trained to distinguish between different 

types of infections or diseases. The process 

requires: 

 A labeled dataset split into three parts: 

 Training set (to generate the 

model) 

 Validation set (for fine-tuning) 

 Test set (for measuring accuracy) 

While creating labeled datasets 

requires significant manual effort, machine 

learning's ability to learn analysis rules 

automatically has made it increasingly popular 

in plant science, contrasting with conventional 

methods that rely on predetermined analysis 

rules. 

Digitalization in agricultural practice: are 

robots the better farmer? 

Researchers have become more 

comfortable with unmanned aerial and 

terrestrial vehicles since the year 2000. These 

might be outfitted with reflectance-based 

disease detection sensors that have higher 

spatial resolutions, making it easier to 

distinguish between biotic and abiotic stress. 

According to West (2003), some systems 

achieved a work rate of three ha/h. However, 

consistent and high-quality data retrieval was 

being hampered by fluctuations in illumination 

intensity, sun/sensor alignment, and/or 

background soil reflection. Soil dust proved to 

be another issue, resulting in inaccurate 

detection and actual crop damage from the 

vehicle.  

These days, mobile platforms like 

drones, automobiles, and robots can operate 

with a high degree of autonomy thanks to 

advancements in automation, mechatronics, 

sensors, electrical engineering, and artificial 

intelligence. The next technological 

advancement in agriculture is the use of 
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autonomous robots with advanced sensor 

systems for automated mechanical weeding, 

spot-spraying of pesticides, and accurate 

fertilizing. According to Lowenberg- Deboer 

et al. (2020), automated robotic applications 

may even provide a substitute for human labor 

shortages, particularly for labor-intensive jobs 

like physical weeding or vegetable harvesting.  

Additionally, by taking into account regional 

heterogeneities in plant pest dispersion or 

input parameters like nutrients, water, and 

agrochemicals, automated systems redesigned 

agricultural production. Depending on the crop 

variety and cultivation system, many robotic 

applications for crop management have been 

developed. The use of UAVs in the field to 

release Trichogramma brassicae, a natural 

adversary of the European corn borer Ostrinia 

nubilalis, as a biological control in maize 

plants is one example. UAVs provide for a 

quick and useful application in open terrain as 

opposed to the manual use of "Trichogramma 

bags." Higher levels of automation are already 

in place in the greenhouse, such as robotic 

plant protection measures for tomatoes or 

robotic harvesting of vegetables like pepper. 

Field crops provide a diversity of obstacles as 

they might be randomly distributed (e.g., 

cereals) or grown in rows (e.g., corn, sugar 

beet, cauliflower). The selective elimination of 

weeds within and between crop rows utilizing 

actuators such mechanical weeding tools, 

lasers, stampers, or milling heads is an 

increasingly popular application. When trained 

laborers for manual weeding were unavailable 

during the COVID-19 pandemic, prototypes of 

these weeding robots increased public 

awareness (Mitaritonna and Ragot 2020). 

Robots that pull weeds are rapidly evolving, 

especially for row crops. These robots can be 

outfitted to handle various working concepts 

and are commercially accessible. The first idea 

relies on the seed pill's extremely precise GPS 

location An automated weeding system and 

orientation require precise sowing with very 

little mistake. With the exception of the 

vicinity of the seed, the entire field is weeded 

by the robots. The seeding phase has no 

bearing on the second idea. The robot can 

identify the crop rows and modify its position, 

direction, and navigation course by using 

digital cameras, a modified vision recognition 

system that primarily relies on neural 

networks, and a sizable underlying training 

dataset. Furthermore, the weeding instruments 

can be positioned in between or across rows. 

Conclusion 

Digital plant pathology has made 

significant strides, as this review has shown, 

but there is still much more to be done.  The 

state-of-the-art must be frequently challenged, 

and new problems must be identified and 

resolved, in order to fully realize the potential. 

Pathosystems can be highly specialized and 
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complex, thus current methods need to be 

critically assessed and adjusted based on the 

specifics of each pathosystem. It is essential to 

have generalized frameworks and models that 

are easy for farmers to understand and use. A 

global database containing spectrum disease 

and plant spectra could serve as an excellent 

starting point for the development of 

generalized models. The TRY plant trait 

database (www.try-db.org; Kattge et al. 2020) 

is an example of a database of this type from a 

different field. Having a uniform method for 

cleaning and uploading data may be one of the 

challenges of such a spectrum data collecting. 

Simple database access, acknowledgment of 

contributions, sustainable data storage, and 

funding for data curation over several years or 

decades are all requirements. It should also be 

mandatory to relate the supplied dataset to the 

sensor type, ambient circumstances, and other 

relevant metadata. Presently, a lot of papers 

offer analysis pipelines on a small number of 

isolated databases (such as Plant Village Data; 

https://www.kaggle.com/ emmar ex/ plant 

disea se), which are unrelated to the intricate 

situations seen in the field. Algorithms are 

frequently not novel, and biological 

interpretation is absent. Nonetheless, this need 

to be a requirement for new publications in the 

field of digital plant pathology. It is necessary 

to integrate the intricate facets of machine 

learning, sensors, and phytopathology. This 

intricacy could be captured and deconstructed 

with the aid of a worldwide database.  
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