

Disease resistance breeding in Cucurbitaceous crop

*Imatiyazahamed Teli¹, Yogananda M¹

INTRODUCTION

Most of these vegetables are subjected to infestation by many diseases leading to heavy loss. Among the various diseases the most devastating is downy mildew, powdery mildew and mosaics. The cucurbitaceous vegetables comprise of cucumber, gourds, melons, squashes and pumpkins are important vegetable crops of India. The chemical method of management of these diseases is costly besides their hazardous residual effect on the consumers. Therefore, it is imperative to concentrate on the development of varieties with high level of resistance. To develop variety resistant to diseases, the knowledge on sources of resistant and their genetics is must.

IMPORTANT DISEASES OF CUCURBITS						
Annual						
1. FUNGAL DISEASES						
•	Anthracnose Col	letotrichum orbiculare				
•	Cercospora leaf spot Cercospora citrullina					
٠	Damping-off Fus	arium spp				
•	Downy mildew Pseu	udo <mark>peronospora cubensis</mark>				
•	Fusarium wilt F usar	ri <mark>um oxy</mark> spo <mark>rum f. sp. cucu</mark> merinum				
٠	Powdery mildew Sphae	rotheca fuliginea				
AGRIC2JIBACTERIAL DISEASES						
•	Angular leaf spot	Pseudomonas syringae pv. lachrymans				
•	Bacterial leaf spot	Xanthomonas campestris pv. cucurbitae				
•	Bacterial wilt	Erwinia tracheiphila				
3. VIRUS DISEASES						
٠	Cucumber green mottle	Cucumber green mottle mosaic virus (CGMMV)				
٠	Cucumber mosaic	Cucumber mosaic virus (CMV)				
٠	Cucumber vein yellowing	Cucumber vein yellowing virus (CVYV)				
٠	Melon necrotic spot	Melon necrotic spot virus (MNSV)				
٠	Squash leaf curl	Squash leaf curl virus (SqLCV)				
٠	Watermelon mosaic	Watermelon mosaic virus (WMV)				
٠	Zucchini yellows	Zucchini yellows mosaic virus (ZYMV)				

*Imatiyazahamed Teli¹, Yogananda M¹

¹Ph.D. Scholar, Division of Vegetable Science, Indian Agricultural Research Institute, New Delhi

E-ISSN: 2583-5173

Volume-2, Issue-7, December, 2023

Table 1. Percent yield loss by different diseases in cucurbits					
Crops	Disease	Yield loss (%)			
Muskmelon, watermelon, Cucumber	Powdery mildew	12-75			
Muskmelon, watermelon, cucumber and squashes	Downy mildew	79.06			
Muskmelon, watermelon, cucumber and gourds	Anthracnose	89.5			
Muskmelon, watermelon, Cucumber	Fusarium wilt	80			
Muskmelon, watermelon, cucumber and squashes	Cucumber mosaic	96			
Muskmelon	WMV	70			
Watermelon	WBNV	71			
Indian melon	CABYV	40			

MECHANISM OF DISEASE include. RESISTANCE such as

Morphological feature: Various morphological characters such as few, small sunken and hairy stomata with lesser opining duration, and lesser opening duration of flower have been found associated with disease resistance in different crop plants.

Hypersensitivity: Hypersensitivity of the host cells leading to the cell death or necrosis around the point of infection and consequent staining of the obligate parasite. This delays staff of an epidemic and contributes to a defense mechanism against specific race of a pathogen.

Biochemical features: Toxic and potentially therapeutic compounds in cucurbits

include, Oxygenated tetra cyclic triterpinoids such as cucurbitacins, saponins, glycosides alkaloids, amino acids and Xanthophylls.

GENETICS OF DISEASE RESISTANCE

Genetice resistance refers to those heritable features of a host plant that suppress or retard development of a pathogen. In other words, resistance is the ability of some genotypes to give higher yields of good quality than other varieties at the same initial level of disease infestation under similar environmental conditions.

VERTICAL RESISTANCE

It displays discontinuous variation among genotypes and classification of genotypes into resistance and susceptible classes. Transfer of oligogenic resistance from

one host genotype to another is simple. It is usually short lived or less durable. The resistance can easily breakdown when new races of a pathogen formed It provides protection only for one race of a pathogen. It has high heritability and can be easily identified in the breeding programme.Vertical resistance applies to host pathogen gene for gene hypothesis.

HORIZONTAL RESISTANCE

Classification of genotypes into different distinct classes is not possible. It has low heritability and here identification of resistant types is difficult.

Protection against several races of a pathogen. The resistance it exhibits continuous variation among genotypes and therefore, cannot be easily overcome by new races of a pathogen due to polygenic control.

METHODS OF **BREEDING** FOR **DISEASES RESISTANCE 1. SELECTION-**

Muskmelon- Arka Rajahans Cucumber - Phule Shubangi

2. INTRODUCTION-

Watermelon-Charleston Grey

Cucumber-Poinsettia

3. HYBRIDIZATION-

Watermelon- Arka Manik

ACHIEVEMENTS-						
Crops	Resistance line/ varieties	References				
1.Watermelon						
Fusarium wilt, anthracnose	Dixielle	Crall and Elmstrom(1979)				
Powdery mildew ,downy mildew and anthracnose	Arka Manik	Bassett (1986)				
Fusarium wilt and Anthracnose	Charleston Grey	Norton et al.,(1993)				
Anthracnose and gummy stem blight	AU Sweet Scarlet, Chalee, Au- Producer	Norton et al., 1986Au-Produc				
Fusarium wilt	Calhoun Gray, Summit					
2. Muskmelon						
Powdery mildew, Downey mildew	Hara Madhu, Punjab Sunehari	Tamburaj and Singh (2001)				
Powdery mildew Downy mildew, Mosaic	Mr-12, Pusa Sharabati Cinco	Tamburaj and Singh (2001) Thomas and Webb, 1982				
Downey mildew and Viral complex	Punjab hybrid, Mr-12	Dhiman et al., (1994)				
3. Cucumber						
Powdery mildew, Downey mildew		Tamburaj and Singh (2001)				
Anthracnose, Angular leaf spot and Downey mildew	Palmetto, Ashley, Chinese long stone, M17'	Singh (2001), Claude and Raymon, 1982,				
Powdery mildew	Polaris, Ambra, Yamaki	Singh (2001)				
Mosaic	Market More	Kalloo (1994)				
Anthracnose	Hybrid 517, South Carolina					

ACHIEVEMENTS-					
4. Bitter gourd					
Downey mildew	RHR	Tamburaj and Singh (2001)			
Summer squash					
Powdery mildew	Punjab Chappan	Powdery mildew			

Conclusion

There is greater scope for development of diseases resistance with high yielding varieties by using various sources of resistance reported for various diseases. Because of evolution of new races of pathogens, the of breakdown diseases resistance. Therefore, breeding for diseases resistance is a continuous process. It is emphasized to develop varieties with multiple diseases resistance to solve the production constraints in cucurbitaceous vegetable crops.

